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ABSTRACT

The paper is the third and final part in the series of three devoted

to the detailed analysis of the three basic versions of the finite element

method in one dimension. The first part [1] analyzed the p-version, the

second part [21 concentrated on the h and h-p versionsand the present

third part addresses the adaptive h-p version.
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1. INTRODUCTION

This paper is the third and final part in the series of three which

analyzes the h, p and h-p versions of the finite element method in one

dimensional setting. It has been shown in Part 1 and 2 that the selection

of the mesh and degree of elements is essential for the performance of the

method. We have shown that the proper selection of the h-p version leads

to the exponential rate of convergence while the h-version with improper

mesh, e.g. uniform mesh, gives very low algebraic rate when a singularity

is present. The adaptive approaches are essential for solving complex

problems, because the structure of the solution is not known a-priori.

In recent years the adaptive methods came to be in the focus of

interest. Various papers, see e.g. [3] [4] [5], address the question of

adaptive approaches in the Finite Element Method. En two dimensional

adaptive research code FEARS (see [6]) and PLTMG (see [71) are avail-

able. Both codes deal with the h-version and linear (p = 1) elements.

However, there is no adaptive h-p version code and only little work has

been done addressing this question. See [81 [9].

In this paper we analyze-,a theoretical frame of the adaptive h-p

version and based on it we provide concrete algorithm for the one dimen-

sional problem. It is proven that in the case that the solution has x -

type singularity, the adaptive algorithm give an exponential rate of con-

* -vergence, very close to the optimal one analyzed in the second part of the

* paper.

We expect that the principles used here in the one dimensional set-

ting could be successfully applied also in the higher dimensional case.

U Although above we used the notion of an adaptive approach in broad sense,

we will later distinguish in a more precise setting between feedback and
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adaptive approach (cf. [10] [11] [121 [13]). By feedback approach we

understand the approach when previous (computed) information are sequen-

tially used. The adaptive approach is in a feedback which has well

defined optimal properties. The distinction between the feedback and

adaptive approach is often worthwhile in a more precise analysis.

We will develop in this paper an abstract frame of the adaptive

approach and its theory. We are concerned here only with the convergence

and its rate in the energy norm. Section 2 focusses on the algorithm,

Section 3 deals with its convergence, and Section 4 analyzes its rate of

convergence. Section 5 gives some numerical and a short discussion of

* implementational aspects. Section 6 summarizes the major properties of

the three basic versions of the FEM.

2. THE ABSTRACT SETTING OF THE ADAPTIVE h-p VERSON ALGORITHM OF THE

FINITE ELEMENT METHOD.

First, we will make some definitions. A mesh A is a partition of

interval [0,1]. For convenience, a mesh A may be regarded as a set of

nodal points or a set of non-overlapping closed intervals, the union of

which is [0,11. The number of intervals contained in a mesh A is

called the cardinality of a mesh is denoted by m(A). To each mesh inter-
val we assign a positive integer p which is called the degree of

the mesh interval. These degrees constitute the degree vector _A. The

superscript A indicates its relation to the mesh A; if there is no

confusion it will be often omitted.

Definition 1. S is the set of mesh-degree combinations. Its element

feff

= A'
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is called the pair, where A is a mesh and is its associated degree

vector.

Z is also regarded as a set of the pairs (I,p) where I E a

and p is the degree of I.

Definition 2. Let E E S, the number of degrees of freedom of E is

m(A)
(2.1) N E deg(E) = Pi.

i=l1

We can make S a partially ordered set by defining the following

partial ordering on S.

Definition 3. Let E1 , E 2 E S. E= (A,.P), E2  (A2,.P 2), then

E l E if and only if:

1 2

1) A2  is a refinement of A,, i.e., as sets of nodal points one

has

A CA

1 2

and we will write

A1  € A2

21

2) 2 is a refinement of i.e., A1 4 A2 , and if

I(1) E AP 152) E A I(2) _ I ) , then (1) (2)

this case we write

£(1) (2)
22

(p(l) and p(2) are the degrees associated to the intervals

(1) (2), resp.)

"I
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We will call Z a refinement of Z,.

Definition 4. The local error function

E( [a,bl ,p)

is a non-negative real valued function defined on the set

*{0 4 a 4 b 1, p > 1, p is integer},

which satisfies the following hypotheses:

* .(El) E([a,bI,p) is continuous in a, b. It is non-increasing

in a and p, and non -decreasing in b.

(E2) E([a,a],p) =0 for 0 a 4 1, p > 1.

(E3) (p-approximability). For any fixed [a,bj ; [0,11

lim E([a,bI p) =0.

For some given X, 1 4 X

(E4) (reverse sub-additivity). If C E [a,b], p )1, then

{E([a,cl,p) + E([c,b],p) I E([a,b],p).

(E5) (h-approximability). Let {A n}-- be a sequence of meshes

for which

lim max =0

n- lEA n

then

lim { E(1,1)Xl}1/X -0.

n



n
(if X a 0, we define a max a).jj i im °-

The number X is called the index of the local error

function.

Remark 1. These hypotheses are very natural if we consider the error

function to be the local error of the best approximation in a certain

function space. For example, let u E L2 (0,1) and

E([a,b],p) = inf Hu-v L2(a,b) ,
vEPp 1

then it is easy to check that all hypotheses are satisfied for X 2.

We have the following simple corollaries which follow immediately

from the definition:

Corollary 1. If Ii _ 12, then

(2.2) E(Ij,p) < E(12,P) (VP I).

Corollary 2. If a-- xx, x< .. < xk  b, p > 1, then

k I1/X
(2.3) { E([ Xi_l,x i],p)} E([a,b],p).

i--1

Proof. (2.2) follows from (El). (2.3) follows from (E4) by induction. U

Definition 5. A local error indicator e([a,b],p) is a non-negative real

valued function defined on the same set as E([a,b],p). And there is a

constant 0 < C 4 1, independent of a, b and p, that

-Hl

(2.4) Ce([a,b],p) 4 E([a,bj,p) C e([a,b],p).

-- --- f --n .-.
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It is obvious that for the local error indicate we have:

Corollary 3. The following properties hold:

(E2)' e([a,a],p) 0 for all 0 4 a 4 1, p > 1.

(E3)' lim e([a,b],p) 0 for any [a,b] i [0,1].
p D

(E5)' Let {AnI be a sequence of meshes, 1 A 4 , and
n n-I

lim max fIll= 0
n+- lEA

n

then

lim { e(l,l)XI/ = 0.
n * I E A

T

(X is the index of local error function).

Definition 6. The global error based on the pair Z = (A,p) is given by

X 1/X
(2.5) E (E) =  E(lipi)}

liE A

where 1 4 X 4 , Pi is the degree of Ii .

Similarly, the global error estimator based on the pair E is given

by

A1/A(2.6) e (1) = ( Y e(li,P) }
I.EA

Clearly we have

Corollary 4. Let C be given (2.4), 1 X €, < be any pair, then

(2.7) Ce (Z) < E (E) C- e (Z).

We now define the feedback h-p version algorithm (we will call it

4 pn~ ~ ' n - i" ,", " ";:" " ' " '
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the algorithm below).

First, let the local error indicator e([a,b],p) be given. We will

divide the intervals of any mesh into two categories, called the h-

intervals and the p-intervals. We will also say that an interval is

of h-type or p-type. The type of an interval is defined by

Definition 7. Let 0 4 y < - be given. Let Z (A,p) be a given

pair, I E A and p the degree of I, let

e(I,p+l) (R = 0 if e(I,p) = 0).R= e(I,p)

Then if R ) y, I is said to be an h-interval; if R < y, I is said to U

be a p-interval (with respect to y and Z).

The number y is called the type-parameter. Usually, we are

interested in the case 0 < y <. 

The feedback algorithm is now defined in a recurrent way:

Let 0 < 6 < I be a given number, called the refinement-parameter

Z n (A n~pn) and

(n) (n) (n)e~ n  max e(lI n 'pi)"
max I~~( )

n%

(n) (n) (n) (n)
with (I P E E . (The interval I. E A on which e is

i 1 n n max

realized will be called the critical interval.) Denoting

then all intervals (n).  E A with e(n) < • e will stay the same
1 n i max

in the mesh &n+l of the new pair £ n+j and the degrees pn) will be

also kept. If for some interval I(n) E An on which e n) e eax

• . . . .. ..- .. , .. -, . .-.. - -. . . ,- . .. -. , .. . . . . . . . ... . . .. .. . .. max'.i. i ~ i . . - -
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then there are two cases:

1) if I (n) is an h-interval, then it will be bisected, and thei

degree p(n) will be inherited by both the bisected intervals;

S(n) (n)
2) If -i is a p-interval, then I i  remains an interval of

A but its degree is assigned to be p(n) +1

We write

E n+1 = T(n) E T(ne,y,O)

where e stands for the local error indicator, y the type-parameter

and 6 the refinement-parameter.

Definition 8. The above rule T of constructing the pair Z from an
n+ 1

existing pair Z is called the transition operator of the algorithm.
n

The subset [n= of S, where E = T(En) for n 1,2,..., isn n7. n .o.,

called a trajectory of the transition operator.

It is obvious that we have

Corollary 5. A trajectory [Z is a monotone increasing sequence in
n

S, namely, E 4 E for all n = 0,1,2,...
n n-I-

Remark 2. There are two degenerated cases for the algorithm: if y

0, then all intervals are of h-type and this algorithm gives a feedback

h-version. If y = , then all intervals are of p-types and will never

be bisected; in this case we will obtain a feedback p-version.

Remark 3. We are speaking about feedback algorithm because the current

information steers the flow of algorithm. Often such algorithm is called

also adaptive (see e.g. [101, pp. 49-50, [11]). We shall distinguish

,+ ................ .- +- *. . . . . . .. . . - ,, i " ' .. - "- ' + .
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between a feedback algorithm and an adaptive algorithm in the sense that

the adaptive algorithm is a feedback having well defined optimality

properties (see [12], [131, [4]). In the next section we will prove that

the algorithm is convergent and hence it is adaptive with respect to the

convergence measure.

3. THE CONVERGENCE OF THE ALGORITHM

Definition 9. If for any trajectory {E}= 0  of the transition operator

lim E X = 0,
X n

then the algorithm is said to be convergent.

We will prove the feedback algorithm defined above is convergent.

First we observe that the (E5) implies:

Lemma 1. Let {ir be a sequence of sets of non-overlapping closedn n70

intervals (not necessarily covering the entire interval [0,1]). If

lim max {IIl} = 0,
n-0 IErn

then

lim { E(I,I)X} I /X  0.

Proof. ~ ~o Ther is7suhta
n

Proof. There is A nsuch that

1) as sets on non-overlapping closed intervals,

n - n

2) max (jIJI max
lEA IE

n n

. .. .
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Applying (E5) to the mesh sequen-e {An YO we obtain using (E5)

{ E(I,I)'}1/X ( { E(Il) XI/X + 0
IE n  IEA

as n + co.

As consequences, it is easy to obtain:

I Corolary If {(n)}

Corollary 6. if {I is a sequence of closed intervals,
n0-

p (n) I and lim 1(n) I - 0, then

lir e(I (n) p(n) 0.
n w

Corollary 7.

Let Onr 0 be given as in Lemma i. Assign I (n) n

n n70 1 n
(n)
p. 1 and assume that

lim max ltI n)I} -

Pii

n +a l(n)

i n

then

" lira { e(n) (n).J1/X .
() e(I " = 0.

n * l(n)E J

nI. E 1T
1 n

We now prove

Theorem I. The feedback algorithm is convergent.

nProof. Let {Z 0 be a trajectory of the transition operator T. By
n n-0

Corollary 5

S. . . . ... . . . . . . . . .+ .
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(3.1) E0  < 2

First we show that

(3.2) lim max {E( (n),p)} = 0
n+o l(n)A

n

where An is the mesh of En, and p(n) is the degree of 1 (n) E An.

By (2.4) it is enough to show that

(n) (n)
(3.3) lim max (e(nI ( )} 0.

n+= I(n)E

n

Suppose this is not true, then there is a subsequence {nk} and a

number e > 0 such that

(nk) (n k ) (nk )

(3.4) emax  = max {e(I ,p ) E .

I k)EA

(nk) (nk)
Furthermore, let c EA be the critical intervals, i.e. e is

(nk) max
realized on I . Corollary 6 implies that there is another subsequence

c

of ink" we still denote it by {nk}, such that

(n
k )Iic I h

(n
for some h > 0, for otherwise e + 0. Since Z 4 , two

max nk nk+1'
(nk  (nk I

intervals I k and I are either non-overlapping or
c C

(nk  (n+) (nk
kBecause I [0,1], there can only be a finite

number of non-overlapping intervals with length > h > 0. Thus we

conclude there is again a subsequence of {nk}, we again denote it by

. . .



13

{nk}, such that for some k > 0

(k ) (k+ 1 ) (nk+2 )

C C

(nk+1) (nk)
Each I is either a result of several bisections of Ic ,or

(nk+I ) (nk)
I Because by our assumption (i I > h, there is
c c (n c

k' such that I is never bisected for k > k' and hence I is
( nk )

the p-interval• Because Ic are critical intervals, we conclude that

(nk)
lim p =+ O
k-

(n (nk)

where p is the degree of I (E3), lim
c c max
(nk) (nk)

lim e(I ' p ) = 0. This contradicts (3.4).
k c c

* -For A = theorem follows immediately.

Assume now that I X < cc. Since (3.1) implies

E (E EX ) E(E 2 ) E

(El) and (E4), it suffices to show that for each c > 0, there is

N(e) ) 0 such that

E (z )) < .

*For each h > 0 we define

h = (I E J An; nI II h}
kO n=k

U " " - -- " ' : " ' " • " " " " °. -" "' ."" " -. . ' -

0 -- - -"", - , - ." " :,h" - -:' ., , ' ; - , , :.. . '" . ." ' " • " " '" ' - : " " : "
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where A n are regarded as sets of intervals. Then for each h there

is No(h) > 0 such that if n > No(h), then

h
iT

n An\ Z

contaiAs no interval I with III > h. Let h. 4 0 and choose

corresponding nj -No(h j) to be such that nj t . Then the sequence

{n =0 satisfies the condition of Corollary 7 and thusn.j0Oii
lim (n.) (h.) X 1/A

(n (n)
llm e(l i Pi 0 .
j- (n )

I i J En.

Therefore there is jO j(e) such that

(n jo) (n j)

(3.5) (n.) E(i P 0 ) < e/2 1

ho

h.h.
JO 0

if E =0, the proof is finished. Suppose E 0. Let M be the

number of intervals contained in Z . By the first part of the proof,

there is j > j0 such that

(nj) (n.)

E(I 9P ) < /(2M)

(n ) h. h.

for all I E E (recall that E contains the intervals which
i

are never bisected againt). Therefore we have
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(nj) (n)

'"[E(I 1 P 1) < c121

(3.6)) h i 9P
(nJ

I  hjo

h.Jo
Furthermore, the intervals contained in A E £ are either inherited

n.
J1

from w or the results of several times bisections of the intervals of
n

0
7T , (3.5) and (El), (E4) imply that

Jo
(nj) (n j I/A

(37 (n E(l i sPi )< e/2/"

1 1/EA1\z(37) (i

i En \h I

and (3.6), (3.7) give

E (E nj < E.

1

Thus the proof is complete. i

Remark 4. Since in the proof we did not use any information of the

parameter y, we have shown a convergence of all feedback h, p and

h-p version algorithms.

Remark 5. We introduced a family of feedback algorithms which create

trajectories { n}. We define the performance measure v0  of the

algorithm so that if E (zn) 0 for any trajectory (Z of the algo-

rithm, then U.0  1 1, otherwise 0  0; and we define the optimal

performance measure to be with maximal value (1 in this case). Thus we

can say that our feedback algorithm is adaptive with respect to the per-

formance measure p0 (called convergence measure, see [121, pp. 7-8).
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4. THE RATE OF CONVERGENCE OF THE ALGORITHM

In order to study the rate of convergence of the algorithm it is

necessary to have more knowledge on the local error function. Motivated

by the results of Part 1 [I], we will study the algorithm on the class of

local error functions which satisfy the following hypotheses:

(Al) There is a point r E [0,11, called the singular point. If

E I c [0,1], then

E(I,1) Colil" ,

where a > 0, C0 > 0 are constants independent of I.

(A2) There is a non-increasing continuous function ( (0,) + (0,1)

with

lim *(t) = 1
t+O

lim (t) = 0

such that for any e > 0 , p > 1, I [0,1], 4 I, and

Sdist( 1 ) C, there is C(c) > 0 such that

E(l,p) C( )[O( Ip .

(A3) If ( { 1, I1 [0,11, then there is r = r(I) > 0, such that

E(I,p) > 0, p > 1

E( I,p+l) r

E(I,p)

the constant 0 < K I is independent of I, and p.

Observe that the hypotheses (Al), (A2) are the characterisics of the

best L2-approximation error of the analytic function with an xatvpe

02
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singularity at F. In Part 1 [] we have shown that if the local error

function E(I,p) represents the L2 -error, then a = a + 1, and

(t) - 1/(1+2t+2vt(+7t) ). The results of Part 1 also show that for the

function (x-E)+ the hypothesis (A3) is satisfied.

Lemma 2. Let the local error function E(I,p) satisfy (Al) (A3),

e(I,p) be the local error indicator of E(I,p), then e(I,p) also

*i satisfies (Al) (A3) with different constants. More precisely, we have:

(AI)- If C E I c [0,11, then

e(I,) C;

where a is the same as in (Al), C' > 0 independent of I.

(A2)- If Ir, 1 cj,11, t dist( 1) > e > 0, then there is

*C'(e) > 0 for which

e(I,p) 4 C'(E)[@(t)] p

where p > 1, @ is the same as in (A2).

(A3)' If 1 I, I c [0,11, then there is r = r'(I) > 0, such that

m . . e(l p+l)
e(I,p)

with p > 1, 0 < < < 1, '" is independent of I and p.

Proof. (AI), (A2)' are obvious. Suppose (A3) holds, then by (2.4) we

have

e(-,p+1) C-E(l,p+1) -2

" e(I,p) 4 CE(,p) 4 C r

e(l,p+1) CE(,p+1)i "e~lp+L ) C(I~+I)> C-Kr

e(l,p) C- E(I,p

0
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where r = r(I) > 0, 0 < C 1 1, 0 < 1 1. Let

r' = r'(I) = C-2 r(I),

- 4

and (A3Y is satisfied. 3

By the hypothesis (El) it is easy to see that (Al) thus (Al)' may be

extended to p > 1:

Corollary 8. If E E I c [0,11, p 1 1, then

e(I,p) 4 C0111"

hold uniformly with respect to I and p.

Lemma 3. Let E(I,p) satisfy (A2) and (A3). Then we have

(4.1) r € q

where r, K are defined in (A3), q - t(t) is given in (A2) and t

dist(F 1)

Proof. By (A3) there is r such that

<r < E(Ip+l) r.
E(I,p)-

This implies

E(I,p) > C(<r)
p

. , - - 'm a m d km . • - .. . . . . .
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with p > 1, C being a constant independent of p. Comparing with (A2)

we then obtain for any p >1

Kr q - (t)

with t = dist( l) Thus

r K - q. m

Corollary 9. If E(I,p) satisfies (A2), (A3), then

(4.2) r' 4 k- q

with r', K' given in Lemma 2, q = 4(t) as before.

Proof. Obvious. U

Lemma 4. Let E(l,p) satisfy (A2), (A3), 0 < y < I is the type-

parameter (as defined in Section 2), and 6 > 0 be determined such that

:i'!

where 0 < y < y < I and < is the constant in (A3)-. If x E I -

,- [0,11,

x # r, and

(4.3) Lx

then

R e(l,4+1)
e(l,p)

where p > 1. Therefore, I is a p-interval.

Proof. Recall 0 < K' 4 1 (see Lemma 2). Since 0 < Yi < y < 1, there

exists 6 > 0 satisfying (M) = K'Y. (4.3) implies

." " . l ..- "...-.. - ---" -...- - ...-.
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dist(E,I) Ix-E- III
tI

therefore (t) < (t) 'yI, and by (A3)" and (4.2)

R = e(l p+l) 4 (K)-I . Y,
e(I,p)

thus I is a p-interval. i

We now study how the algorithm does if the hypotheses (Al) ~ (A3)

are satisfied. For simplicity we assume the trajectory ) starts

with the mesh A0 = [[0,11}, and_ 0 = (p0 ), p0 > 1. In this case, any

meshes of the trajectory can only contain the interval of the form

(44)-IL k ] I € k 2 n', n =0,1,2,.
(4.4) 12 , 2n <, , .

2 n 2 n

Definition 10. An interval of the form (4.4) is called a binary interval

of level n.

Lemma 5. Let the local error function satisfy the hypotheses (A2) - (A3).

Let y be the type-parameter 0 < y < 1. If x E [0,1], x 0 E, then

the algorithm will generate a binary interval I such that x E I, I is

a p-interval and it remains to be a p-interval in the further process.

Proof. By the proof of Theorem I we have shown (without (A2) ~ (A3))

lim max (e(I ) 0.
V+=0 (V)

I. EA.3 V

Therefore, if x E lv E A , x # and e(l t), o.V)) > 0, in the

further process either I ) will be bisected or p.V) will go up. By
.3.

6
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Lemma 4 the bisection must stop if the size of the interval is small

enough, in other words, there is v0  such that if x .I then
(VO) J
I. is a p-interval and lies in all A v > V0 .

Lemma 6. Let the local error function satisfy (A2) - (A3), and 6 > 0 be

* defined in Lemma 4. Suppose that the pair E is generated by the algo-

rithm and it has its smallest interval which is of level n, then the

total number of intervals in the mesh A of Z is bounded by

(4.5) M = 2(n+l)(L+l) + 1

where L = [1+61.

Proof. By Lemma 4, if x E I, x and

If ~ L

then I is permanently a p-interval (i.e., it remains as a p-interval

in further process). This is true if

1L
(4.6) 11+T I-

* _ where L = [1+6].
= 1

If this interval is of level k, then ill-- and

(4.7) +L

Without loss of generality we can consider the interval which is

right to . Denoting d = dist(E,I), (4.7) implies that for each k

there are no h-intervals of level k with
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(4.8) d > k

IM
Because each p-interval, except [0,11, is obtained by bisecting

an h-interval, the above implies that there are no p-intervals of

level k with

1+L 1 2L+3
(4.9) d > = -

k-i kk2 2 2

Now within a distance from E between +l and 2T ,  one can at
+L k+ - 2

most put in 1+ ]  h-intervals (of level k) or (1+L) p-intervals.

Either way, the number of intervals within above range is bounded by

(I+L). This is true for all 0 4 k 4 n. Within a distance ranging from
I+L

0 to -, there can be at most (I+L) intervals since the smallest2n

interval is of level n. Hence the total number of intervals to one side

of r will not exceed (n+l)(l+L). Including the interval containing

, total number of intervals in the mesh then will not exceed

M = 2(l+L)(n+l) + 1. S

Lemma 7. Let the local error function satisfy (Al) ~ (A3), 0 < y < 1,

0 < 6 < 1, and let {E V= 0  be a trajectory starting with

= ), P0 > 1. In addition, let the local error indicator

e(l,p) satisfy the hypothesis:

* (El)- if I?,2 [0,11, 1 12, p > 1, then

e(I ,1P) e(12,P)

e(l~p+l) e(l,p).S

... .. .. .. 0 , _ . , -, - .. .. 2 :: . -::: : _ i .: - .: -. :: :: : ::, :
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Then we have

deg( ).

-2[ m(AV
(4.10) Ex (E) C [m(A )I / e

where AV is the mesh of EV, m(AV) is the number of intervals in

A, deg(Z ) is given by (2.1), and C1, C2  are positive constants

independent of v.

Proof. First we claim that there is a constant C independent of v such

that if (l,p) E Z , then

(4.11) e(I,p) 4 Cyp.

We prove this by induction on p > p0. Note that the trajectory is an

increasing sequence of pairs

(4.12) z 0 4 E 1 2 E 2 "

Let l[p] denote an interval which has degree p. Suppose for some v,

.[p] E AV, and p o p0. Let

2ip0] -[p 0 +i] [p-1] - [p]

be the sequence of the successsive ancestor intervals of Ip], each of

which has corresponding degree as indicated by the subscript. By the

hypothesis (El" we have

(4.13) e(I[P ,p 0 ) < e([0,1],p ) Cy
00 0

We not let p > p0. Suppose

0T - .T . .? - i . . . - . .

. .. . . . , _ -, _ , , . .i . ' . .T -. . L I - . - " . . . . . - " - .' " ' • • - -' " . - , - .I ' . , L".- ' . - .
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In.e(l(p-l ] p-l )  ; Cyp .

If lp] I [p-11, then l[p-l ] is a p-interval. Thus

e(l[p],p) < ye(l[p],p-1)

= ye(l[p_l ] ,p - l )  4 Cyp .

If [p] I[p_,], then there is Ip] Ip such that I[p1 c

Ilp] _ iP-i] thus by (El)'

i e(l[p] ,p) -C e(l*[p] ,p)
~i

4 e(l*[pIl] ,p- I ) 4 Cyp .

This proves (4.11).

Let e be the maximal local error indicator for E For
max V

0 < < I we define p by

i~y "(V)-, vl

(4.14) Cyp  (v-e v = 1,2,3,...

where C is given in (4.11). By the hypothesis (El)' and (4.12) it is

easy to see that

(v1) (v2)
e 2emax max if V1 < v2 ,

and it follows immediately that

(vi) (v9)

(4.15) p p , if v1  v2.

We now claim that

bS

" ' "' ;- " '. : . . ' , ' '. , '' " .i m " a 
:

" i " . . ."- n- ' | " ' : : ' . . " ''
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(4.16) P(V) 4 P V for all v ) I

(v)
where P max is the maximal degree of the intervals of Z . We will prove

max V

this by induction. Observe that (4.11) and (4.14) imply that

PCp 0 ) e([0,l],P0
)  > e 0

(e (0
• max|

-cyp

thus

P ( 1)

(1) ,,(1)

Pmax

Suppose we have

(v-i) -(v-i)

Pmax p

Now for (V) either (V) (v-I) (V) (v-i) + I In the first
max' emax = P or Pmax = Pmax

case

(V) -(v-i) -(v)
Pmax P

(v)
and in the second case the interval I having degree pmax was a p-

interval of E vi . Hence according to the algorithm we have

e(,p (v-) ae(V-1) Y (-= Cy
max max

By (4.11) this gives

. . . .. - ' ].
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(v-i) • p -( 1

max

thus

(v) ,(V)
Pmax P

Therefore (4.16) is true for all v > 1. From (4.14) and (4.16) we obtain

(V)

(V) e(V-i) C Pmax
e max max 6y

deg E N

C M(A)
ey

Then

im(Av) A, n) 11X

ek(Z) ' e(I VPi

deg Z

C 1/X V~ (m(A )) y"
By

and (4.10) follows. In particular C2 = in Z .

We now prove the main theorem.

Theorem 2. Let hypotheses (Al) W (A3) and (El) hold, 0 < y < 1,

1. Let (Z be a trajectory starting with , ([0,1,P0),

P0  I. Then there exist positive constants C1  and C2  independent

of v such that

-C2 (a deg ZV) /

(4.17) EX (S) • CI e

(where 1 X < is the index of error function (see Definition 4) and

... .. .. .. ,.'-. . " . - .. -7--. * , . -; % . "- " " .. , -
.
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a is the exponent in hypothesis (Al)).

Proof. First if m(A ) is bounded by a finite number, then by Lemma 7 we
V

will have an estimate Cle which is better than (4.17).

Therefore we can assume m(A ) for V +
V

Suppose that the smallest interval I of Z. has a level n,

-n Lt (v)
thus III = 2 Let e(m )xbe the maximal local error indicator.max

Furthermore, let J be the parent interval from which I was obtained by

bisecting J in E V v v - 1. Therefore J is an h-interval of

level n - 1, and by (4.8) we must have

*(4.18) dist( ,J) < L+1
2n-i

where L is given in Lemma 6.

Let I be such an interval that E E I and J I, it is easy to

obtain I with

. +L+2
2n-I 2n-I 2n-P

By (AI), we obtain

*I(I,p) 4 c0111C 4 (+ C
2 

-2

where p is the degree of J in E , and by (El)' we get

:rL+2c

e(J,p) 4 e(l,p) C 0 -1_ )

* Because J was bisected, we must have

:: ,-i - " : " :- .: : ': :: : ": : . ' . . . . . ..?::::: . . :. . : , ; ,...
. . . . . . .. . . ..
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(vi)

e(J,p) e e

Using (ElY we derive

(4.19) e (v) e a e(J,p) 4 CSmax max

-1
where C = -C 0(2L+4) . On the other hand Lemma 6 shows that

m(A ) 4 2(n+l)(L+I) + 1
V

because the smallest interval of A is of level n. Thus
V

m(A )-I
n - ,

2(L+1)

and (4.19) shows that

m(A V)- lI o(

e(V) 4 C( 71)2(L+1) - I - 2(L+1) V
max 2a)C 7

for some constant C- > 0, indepennent of v. Therefore

1/X 2(L+IT) m( )(4.20) e (z )  C'(m(Av) e.
VV

In Lemma 7 it has been shown that

1 deg Z u

-(Zn -) eg

(4.21) a nd( C(M(AV.2/ g

(4.20) and (4.21) give
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!-r C n 2 deg(E )
2(L+En) m()ny m(A )

I/A (+)V e(

e ( ) ' C(m(A )) e

i.n 2•.f / /o deg(Z )

SC(m(A 1)/A - 2(L+1)v
e

Noting that m(AN) 4 deg(AN), the above inequality implied (4.17) by

taking C /Zn 2 L / - E (e small enough so that C2 > 0), and2 2(L+1)2

then choosing C1 .

In (Al) we assume E [0,11. Suppose ( [0,11 but (A2), (A3)

hold, then we have

Theorem 3. Let hypotheses (A2) (A3), (El)" hold with [0,11, 0 <

y <1, 0 < e < 1, and let (E I be a trajectory starting with

E = ([O,1,po), p0 ) 1, then the number of intervals m(A ) is bounded

by a finite number when v =. Therefore

-C deg(O )

(4.22) 
E (E ) < CIe

with C1 , C2 > 0 independent of v.

Proof. By Lemma 5, since in this case x # , the algorithm will generate

a permanent p-interval containing each x E [0,11 (these intervals will

never be bisected again). Clearly there are only finitely many such inter-

vals. The rest of the part of the theorem follows from Lemma 7. I

We now discuss the adaptivity of the algorithm. Recall in Part 2 we

obtained for the model problem that the optimal rate of convergence in the

0 -, ' i -.. -, ' -. .i .. " . i . ., . , -
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energy norm of arbitrary mesh-degree combinations (the pairs) when

(0,11 is bounded below by

C(a) [( '- 1)21 /
- 1/2

where N is the number of degree of freedom. This is the case that the

local error function was given by

E([a,b],p) = inf I ellL2(ab)
vEPP- 2'..- VE p- 1

and X =2, a a -I/2. We see that this rate of convergence is of the

for.. C2  - 2

form CIe with C2 = .n[(V2- 1)

It can be shown under the assumptions of Theorem 2 (with certain

condition on ) that there are constants Ci, C2 > 0

(4.23) 4D(, N) = CI e

is the best possible estimate. Therefore we define a performance measure

W as follows:
e

If there are constants C > 0, p ; 1, such that

EA(K) 'C[(,deg( ) i/P

. for v= 0,1,2,..., then ue 1, otherwise e= 0. We then can sav:

Theorem 4. Under the conditions of Theorem 2, the algorithm is adaptive

with respect to the performance measure ie"

0'
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Remark 6. The notion of the adaptivity (as the optimality of the feedback)

can be defined in various ways here. It directly relates to the question

of comparison of feedback algorithms. In (101 [111 it is shown that if one

considers only the worst case problem from a class F, then for many

classes F the nonadaptive approach is as good as any adaptive one.

In [121 [13] [4] the optimality is defined asymptotically (for high

accuracy and the performance of a trajectory created by an algorithm (for

every particular problem) is compared with the performance of the best

trajectory (for a given particular problem). In [4] the set F of pro-

blems is characterized for which as class of feedback algorithm create

trajectories with comparable performance as the theoretically best trajec-

tory and hence the feedback algorithm is an adaptive one.

In this paper we judge the algorithm how it performs with respect to

a worst case in a narrow class of solutions having a singularity of the

type xa inside or outside of the interval I. It is clear that not a

single non-feedback algorithm can perform better than our feedback algo-

rithm for this class of solutions.

Remark 7. It is possible to obtain the results of this section only on the

base of the hypotheses (AI)' - (A3)" and (El)" of the local error indicator

without the assumptions of local error function E(I,p). In fact, the only

statement in the section which required the property of E(I,p) was

(v) (V))(4.24) lim max e(I P = 0

i V

where A is the mesh in the trajectory JE }0'
* V V=v0

Now we prove this directly based on (AI)' (A3) and (El).

i'.-'-,.''-,-~ ~~~~~~~ ~~ ~~~. .., - . l - .ii i f. " .. .... .... . . i

0 .) t .?-... 2 j . t. .dm
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Let ) A be the critical interval, and x (v) be the middle
C V c

point of I(v) Since 0 € x(v) x 1, there is a subsequence {v'} c {v}C "C

lim x ( V' ) = xc c
V

Also let hV 1 (v), since 0 < hV < 1, we can assume for the same sub-

sequence {v

lim h . = h.
v-o

If h > 0, there can be only finitely many I( ' ) which are different.

, , (v') = ilb fxda

Therefore, there is v0 if v" > co, then Icv' I will be fixed as

a permanent p-interval, therefore p cv ' ) + O and the algorithm gives

(V')p (v ' ) - (vO)
e(c, V)) (< e( ,Pc 0 ) c c + 0

as v" + 00. By (El) the maximal local error indicator is non-increasing,

therefore (4.29) holds.

We now assume h = 0. First, observe in this case we cannot have xc

* . Form (A2)' and (A3)', the argument in proving Lemma 4 shows that if

an interval does not contain ;, then it cannot be bisected infinitely

many times. Thus there are no invervals I(v) with dist(,I ) s > 0

a and !I + 0.

This shows we can assume x = . For each a c(V), let the inter-

val ( contain both $ and 1" ' ) . Clearly, we can choose ( to

be such that

4 . - . . -. ". " " - ' .. . - '
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x(V)+ h + 0 (as v' + 0)

Therefore by (AI" and (El)

(v) (W)
e(I 'PC ) e(! 4)'

00 Coll( W)l I a o.

This completes the proof of (4.29). I

As a last remark we indicate that the above results are all valid if

we increase the degree uniformly on all intervals. In fact, the proofs are

concerned with the worst possible degree distribution made by our algo-

rithm. If, instead only increasing the degree on some p-intervals as

described in Section 2, we increase all degrees by I whenever there is

p-interval on which degree is supposed to be increased (cf. Definition 8),

then we will obtain an adaptive h-p version algorithm which produces uni-

form degree vector, and this modification does not cause any change in our

original proof.

The case having uniform degree vector is important because it is much

easier to make implementation in 2 and 3-dimensional case.

5. NUMERICAL RESULTS

Table I and Figure I are the numerical results obtained by using the

adaptive h-p version algorithm described in Section 2. The problem is the

model problem

-Ul= f

u(O) = u(i) = 0
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with the solution

u(x) =(x-&) a (l-E) ex -(-o)'(1-x)

and we compute for the case a = 0.7, a = 1.1, =O, =0.3,

respectively. The local error indicators are exact local error of the

finite element solution. According to the theory, we will obtain an

exponential rate of error reduction.

(5.1) EN  = Cr K/N

where N is the number of degrees of freedom and r = 10.

We use linear regression to find the constants C and <. Comparing

0 with the theoretic values K' for the h-p extension with geometric mesh

and linear degree vector when qopt = 0.1715 (the optimal one), q = 0.5

with corresponding optimal s, we obtain the following table:

TABLE I

qopt=1715 q=0.5 q=0.1715 q=0.5

0 2.458 0.3174 0.7097
0.7 0.3424 0.3036

0.3 6.280 0.3566 0.7974
0.7656 0.6789

0 0.6106 0.5563 0.7181

1.1 0.5930 0.5259
0.3 6.115 0.6642 0.8575

Figure 5.1 shows that the error reduction curves are near to straight lines

in the VN - loglle! E  scaled graph, as expected. The slopes shown in Fig.

5.1 are the theoretical ones for qopt and q = 0.5.

For the implementation of the algorithm, as mentioned before, the

assumptions of the theory are satisfied for the model problem, -u" f,

- . . ._ . -- . , . . - .. -- , - ,. _ . .. . . . ,. . , . .. . ..
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when the solution can be obtained on each mesh interval separately. In the

general case, the local errors are affected by global error and the assump-

tions are not to be satisfied. Furthermore, there is a problem in finding

an effective local error estimator for large mesh intervals and high

degrees. Although there are difficulties in both theoretical and practical

-)

100

-4 ( b) '

, I0

Io-e
1I0.5524

10 -8

C =0.0

1 I0 50 100 200
N

Figure 5.1.

aspects of the adaptive h-p version of the FEM, a program was written for

the one-dimensional two-point boundary value problem:

-(a(x)u')' + b(x)u = f(x) x E (0.1)

u(O) = u(M) = 0

Figures 5.2(a), (b) are the results obtained by using the adaptive

h-p version FEB program to solve the following problem

-U + xu = f

u(O) U(1) = 0

S1
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(1>

100

10-6 :0.5259

1 10 50 100
* N

Figure 5.2(a).

4(b

10-6

1 1 10020

N

Figure 5.2(b).

Aim
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with the solution

u(x) = (x-)-

for a = 1.1, = 0 and = 0.3. The graph is in VN - logllell scale,
E

(a) shows the error. (b) (the dotted curves) are curves of estimated error

-(by the global error estimates).

, We also use linear regression to obtain the constant K defined in

*formula (5.1), which is shown on the figures.

Our results show the program also performs very well on this

problem. The global error estimator is very reliable. When = 0.3 the

singular point will never be a nodal point during bisection. In this case

*the curve, although oscillating, still gives the expected exponential rate,

with the rate of convergence and the error itself better than when # 0.

The program basically agrees with the algorithm as described in Sec-

tion 2. There are nevertheless some different features in the program:

1) We not only increase the polynomial degrees but also allow lower-

ing them. The reason for doing this is to make the local error more equi-

librated so that we can avoid unnecessarily increasing the total number of

degrees of freedom. This is done in the following way.

For each v = 1,2,..., we let p0 << y be given,

0

(5.2) p = min{P, = 1,2,...

with

R(V) = min{RIR = e(Ip+) (l,p) Z }.
e(T,p)'

(v) () (C v) (v) (v)
If e. = e(lM p () < PV e (e = max {e. }), then the

SJ j j max max 1~j~m( ) J

"-.'(V) (V) (V)
degree p. of I. will be lowered by I (but keep p. 1).
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In general, lowering the degree could be dangerous. Consider the

following situation: Let el, e. be two local error indicators, and

P= 0 is given a priori. Suppose that the two intervals are of p-type

and

e < pee1 < emax

(V)
2 emax

By our algorithm, the degree of first interval will be lowered by I and

its local error indicator will change to ej > el. Meanwhile the degree of

second interval will be raised by 1 and its local error indicator will

change to e- < e2. However, it may happen that in the next step we have

2~ 2'

max

e2 < e+)max

Then everything will be back to the original state and the program will run

into a viscious circle.

Observe that the conditions for this to happen are

e < pe, e'

thus

e e e2 e 2
R,= e pP 2 e2 e <  2

2 1 1 2

2
where R2  e /e2. Therefore p > R R2. If we choose Q as in (5.2),

the vicious circle can be prevented.

2) To find a good local error indicator is not a simple problem,
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since the h-p version program produces large elements and high degrees.

We are using the following method:

On the interval I (which has degree p), the finite element

solution can be written as

u (x) C+q (x) + (I) + C 2q (x) + . + C q (x)

where q ll)(x) and q Il)(x) are linear such that

q()(xi -) = I, q(1 6 ) = 0

* q(l)(x) = 0, q()(xi ) = I

and q. (x) (i > 2) are integrals of Legendre polynomials (transformed

to I ] [xi ,Xil. We predict C by solving a local stiffness matrix,

and the local error indicators are defined to be

e(I,p) = { (lC -(1)pq2 •()21/2
2 p-lp- E p p E

There is no theoretical analysis available which shows how good is this

error indicator. Our numerical computation shows that for our examples it

performes well, but on the interval with singularity in it, this error

indicator is low quality.

6. THE PERFORMANCE OF VARIOUS VERSIONS OF THE FEM, THE CONCLUSIONS

In this section we will compare and summarize the performances of all

versions of the finite element method in a concrete setting of an example.
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Let us consider the problem

~-u" = f

u(O) = u(I) = 0

with the exact solution

u(x) = x -x, ai= 1.7

having a relatively strong singularity at the origin.

As before, we are interested in the performance measured by the

energy norm of the error. The graphs plotted in the double logarithmic

scale will show the dependence of the error on the number N of degrees of

freedom.

Fig. 6.1 shows the performance of the h-version (p = 1,2) for the

uniform, the optimal radical and feedback h-version. For comparison, we

also show the performance of the optimal h-p version (i.e., the geometric

-m hh version uniform mesh p=l

01

'v-I-p=2

10-2 
_ dbock h version

". = - ~ ~optimal h-p version..,, =

1: 0- 3 p=

h version optimal dical mesh
;!l10-41 a=0'7

I.10 100 1000

N
Figure 6.1.

• .-..,..... .~~ ~~-........ .... .,.,., .. ..... ,..:......:...:..........::, ::+:
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9
mesh with the ratio g = (/2 - )- .1715 combined with a linear slope of

degrees s = 2a - 1 = .4).

The figure clearly indicates that the h-version with uniform mesh is

not acceptable. The h-version with optimal mesh performs relatively well

but strong refinement could cause round-off problems. For p = 2 the

relative accuracy of 1% is achieved with N - 40 and the ratio of the

sizes of the maximal and minimal elements is 1015. The h-p version

requires N - 35, maximal degree 5 and the ratio of the series of

elements 109 for achieving the same accuracy of 1%. Fig. 6.1 also shows

the performance of the feedback h-version for p = 1 and p = 2. The

feedback method is here adaptive with respect to the rate of convergence

u. The rate is the same as the rate of the h-version with optimal

mesh. (The feedback approach is more expensive than the computation with

a-priori given radical mesh. Nevertheless the cost is not too high.) The

figure shows clearly that when higher accuracy is required, then the dif-

ference between the performances of various versions increases.

Figure 6.2 compares the performance of the h, p and h-p versions.

It shows the performance of the p-version (uniform p < 10 with the geo-

metric mesh (q = 0.15) and m = 2,5,10 elements. We also show the per-

formance of the p-version (with the same number of elements m) when the

degrees p are chosen in a feedback way. For m = I and m = 5 the

p-version fails to achieve accuracy of 1%. If m = 10 then the size of the

smallest element is of order 10- 8  and the accuracy of 1% is achieved

for p = 4. We see that here (i.e., for m = 10) the p-version performs

in the certain range of accuracy similarly as the hp-version. This

clearly indicates the importance of the selection of a proper mesh. We

also see here the typical shape of the curve (the S-shape) when in the

. .. . " .|
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first phase the error decreases exponentially and in the second phase

algebraicaly with the rate /2

h version

unfomml mesh o
Sp version

F 3 sw teof o ptimal s h

~~~~~~~~~~~~optimal meshn unfr an nouiom(pia)dsrbtns fth

- p = l
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10 100 1000
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Figure 6.2.

Fig. 6.3 shows the performance of the optimal h-p version with

optimal mesh and uniform and nonuniform (optimal) distributions of the

degrees of elements. We see the exponential rate of convergence in both

cases. The accuracy of 1% is achieved with N = 35 for the optimal non-

uniform p-distribution and N = 50 for the optimal uniform distribution

of the degrees of the elements. Fig. 6.3 also shows the performance of the

feedback h-p version. We see the same rate although the error is slightly

larger. It is clear that the h-p version is expecially effective when

higher accuracy is required.
1

I"

. ..



43

- I
mfeedbck h-p version

(unifor niform degree)
I0- 0,,, - feedbaock h-p version

N

S soptima l h-p versionocl

10 3 T optim ol h-p versionh is e- (uniform degree) ,

10-4 a=0,7 _ 7

... 1I0 1 00 1000

N

Figure 6.3.

In summary we conclude

1) A uniform mesh cannot produce accurate results for a reasonable

cost if the solution has a singular behavior.

i 2) The proper selection of the mesh is essential for the perform-

ance. The mesh can be constructed a-priori if the structure of the solu-

tion is known or it can be constructed in a feedback way. The under-

refinement of the mesh has to be avoided. The overrefinement does not

influence too negatively the performance.
O

3) The higher degree elements with properly designed mesh perform

better than elements of low degrees for both smooth and nonsmooth solu-

tion. If high accuracy is required then, especially, the high order

element perform well.

. . . . . .
. . . . . . . . . . . . . . . . . . .
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K.,:'4) The p-version is in practical computations effective provided

the mesh is properly designed and the required accuracy is achieved in the

exponential phase. If the mesh is not properly designed then the

p-version does not perform well for singular solution although better than

the h-version with uniform mesh.

5) The feedback methods can be designed so that they are adaptive

- -with respect to the convergence and to the convergence rate u. They per-

form comparably as the optimal meshes.

Although our conclusions are based on the one dimensional case, our

results and computational experience related to the two dimensional pro-

blems indicate that the conclusion are valid also in two dimension case.

Let us mention that we did not address various aspects of computa-

tional complexity as number of operations, data flow problems, etc. These

aspects will be addressed in detail in [121 in the two dimensional setting.
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